Algebra

Factors & Roots

The Factor Theorem

P1 - Algebra

If (x - 3) and (x + 2) are factors of the equation $f(x) = x^3 - 6x^2 + ax + b$, find the values of *a* and *b*.

Solution

Applying the Factor Theorem, (x - 3) is a factor so f(3) = 0

- $\Rightarrow \quad f(3) = (3)^3 6(3)^2 + a(3) + b = 0$
- $\Rightarrow \qquad 27 54 + a(3) + b = 0$
- \Rightarrow 3a + b = 27(i)

Similarly,
$$f(-2) = 0$$

 $\Rightarrow f(-2) = (-2)^3 - 6(-2)^2 + a(-2) + b$
 $\Rightarrow -8 - 24 - 2a + b$
 $\Rightarrow -2a + b = 32$ (ii)

Subtract (i) from (ii)

$$-2a + b = 32$$

 $3a + b = 27$
 $-5a = 5$
 $a = -1$ and $b = 30$

So the equation becomes $f(x) = x^3 - 6x^2 - x + 30$

?